
Spreadsheet Link™ EX

User’s Guide

R2014a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Spreadsheet Link™ EX User’s Guide

© COPYRIGHT 1996–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
May 1996 First printing New for Version 1.0
May 1997 Second printing Revised for Version 1.0.3
January 1999 Third printing Revised for Version 1.0.8 (Release 11)
September 2000 Fourth printing Revised for Version 1.1.2
April 2001 Fifth printing Revised for Version 1.1.3
July 2002 Sixth printing Revised for Version 2.0 (Release 13)
September 2003 Online only Revised for Version 2.1 (Release 13SP1)
June 2004 Online only Revised for Version 2.2 (Release 14)
September 2005 Online only Revised for Version 2.3 (Release 14SP3)
March 2006 Online only Revised for Version 2.3.1 (Release 2006a)
September 2006 Online only Revised for Version 2.4 (Release 2006b)
September 2006 Seventh printing Revised for Version 2.4 (Release 2006b)
March 2007 Online only Revised for Version 2.5 (Release 2007a)
September 2007 Online only Revised for Version 3.0 (Release 2007b)
March 2008 Online only Revised for Version 3.0.1 (Release 2008a)
October 2008 Online only Revised for Version 3.0.2 (Release 2008b)
March 2009 Online only Revised for Version 3.0.3 (Release 2009a)
September 2009 Online only Revised for Version 3.1 (Release 2009b)
March 2010 Online only Revised for Version 3.1.1 (Release 2010a)
September 2010 Online only Revised for Version 3.1.2 (Release 2010b)
April 2011 Online only Revised for Version 3.1.3 (Release 2011a)
September 2011 Online only Revised for Version 3.1.4 (Release 2011b)
March 2012 Online only Revised for Version 3.1.5 (Release 2012a)
September 2012 Online only Revised for Version 3.1.6 (Release 2012b)
March 2013 Online only Revised for Version 3.1.7 (Release 2013a)
September 2013 Online only Revised for Version 3.2 (Release 2013b)
March 2014 Online only Revised for Version 3.2.1 (Release 2014a)

Contents

Getting Started

1
Spreadsheet Link EX Product Description 1-2
Key Features . 1-2

Microsoft Excel and MATLAB Interaction 1-3

Installation . 1-5
Product Installation . 1-5
Files and Folders Created by the Installation 1-5
After You Upgrade the Spreadsheet Link EX Software . . . 1-6

Add-In Setup . 1-8
Configure Microsoft Excel 2003 and Earlier 1-8
Configure Microsoft Excel 2007 and Later 1-9
Work with the Microsoft Visual Basic Editor 1-13

Customization . 1-14
Set Spreadsheet Link EX Preferences 1-14
Use Particular Versions of MATLAB 1-15

Startup and Shutdown . 1-16
Start Spreadsheet Link EX andMATLABAutomatically . . 1-16
Start Spreadsheet Link EX and MATLAB Manually 1-16
Connect to an Already Running MATLAB Session 1-16
Specify the MATLAB Startup Folder 1-18
Stop Spreadsheet Link EX and MATLAB 1-18

MATLAB Functions in Microsoft Excel 1-19
Spreadsheet Link EX and Microsoft Excel Functions 1-19
Types of Spreadsheet Link EX Functions 1-19
Use Spreadsheet Link EX Functions with Microsoft Excel
2007 and Later . 1-20

Use Worksheets . 1-23
Work with Arguments . 1-24

v

Use the MATLAB Function Wizard 1-26
Use Spreadsheet Link EX Functions in Macros 1-31

Work with Dates . 1-35

Localization Information . 1-36

Solving Problems with the Spreadsheet Link
EX Software

2
Model Data Using Regression and Curve Fitting 2-2
Using Worksheets . 2-2
Using Macros . 2-6

Interpolate Data . 2-11

Price Stock Options Using the Binomial Model 2-15

Compute Efficient Frontier of Financial Portfolios . . . 2-19

Map Time and Bond Cash Flows . 2-24

Error Messages and Troubleshooting

3
Worksheet Cell Errors . 3-2

Microsoft Excel Errors . 3-5

Data Errors . 3-9
Matrix Data Errors . 3-9
Errors When Opening Saved Worksheets 3-9

vi Contents

License Errors . 3-11

Startup Errors . 3-12

Audible Error Signals . 3-13

Functions — Alphabetical List

4

vii

viii Contents

1

Getting Started

• “Spreadsheet Link EX Product Description” on page 1-2

• “Microsoft® Excel® and MATLAB Interaction” on page 1-3

• “Installation” on page 1-5

• “Add-In Setup” on page 1-8

• “Customization” on page 1-14

• “Startup and Shutdown” on page 1-16

• “MATLAB Functions in Microsoft® Excel®” on page 1-19

• “Work with Dates” on page 1-35

• “Localization Information” on page 1-36

1 Getting Started

Spreadsheet Link EX Product Description
Use MATLAB® from Microsoft® Excel®

Spreadsheet Link™ EX connects Excel spreadsheet software with the
MATLAB workspace, enabling you to access the MATLAB environment
from an Excel spreadsheet. With Spreadsheet Link EX software, you can
exchange data between MATLAB and Excel, taking advantage of the familiar
Excel interface while accessing the computational speed and visualization
capabilities of MATLAB.

Key Features

• Data preprocessing, editing, and viewing in the familiar Excel environment

• Sophisticated analysis of Excel data using MATLAB and application
toolboxes

• Delivery of Excel based applications, using MATLAB as a computational
and graphics engine and Excel as an interface

• Interactive selection of available functions using the MATLAB Function
Wizard

• Visual interface for customization of all Spreadsheet Link EX preferences

1-2

Microsoft® Excel® and MATLAB® Interaction

Microsoft Excel and MATLAB Interaction
Spreadsheet Link EX Add-In integrates the Microsoft Excel and MATLAB
products in a computing environment running Microsoft Windows®. It
connects the Excel interface to the MATLAB workspace, enabling you to use
Excel worksheet and macro programming tools to leverage the numerical,
computational, and graphical power of MATLAB.

You can use Spreadsheet Link EX functions in an Excel worksheet or macro
to exchange and synchronize data between Excel and MATLAB, without
leaving the Excel environment. With a small number of functions to manage
the link and manipulate data, the Spreadsheet Link EX software is powerful
in its simplicity.

Note This documentation uses the terms worksheet and spreadsheet
interchangeably.

The Spreadsheet Link EX software supports MATLAB two-dimensional
numeric arrays, one-dimensional character arrays (strings), and
two-dimensional cell arrays. It does not work with MATLAB
multidimensional arrays and structures.

1-3

1 Getting Started

1-4

Installation

Installation

In this section...

“Product Installation” on page 1-5

“Files and Folders Created by the Installation” on page 1-5

“After You Upgrade the Spreadsheet Link EX Software” on page 1-6

Product Installation
Install the Microsoft Excel product before you install the MATLAB and
Spreadsheet Link EX software. To install the Spreadsheet Link EX Add-In,
follow the instructions in the MATLAB installation documentation. Select the
Spreadsheet Link EX check box when choosing components to install.

Notes: If you have several versions of MATLAB installed on your computer,
Spreadsheet Link EX uses the version that you registered last.

To install the Spreadsheet Link EX Add-In, you need administrator system
privileges on the computer. Contact your system administrator to enable
these privileges.

Files and Folders Created by the Installation

Note The MATLAB root folder, matlabroot, is where MATLAB is installed
on your system.

The Spreadsheet Link EX installation program creates a subfolder under
matlabroot\toolbox\. The exlink folder contains these files:

• excllink2003.xla: The Spreadsheet Link EX Add-In for Microsoft Excel
2003 and earlier

• excllink.xlam: The Spreadsheet Link EX Add-In for Microsoft Excel
2007 and later

1-5

1 Getting Started

• ExliSamp.xls: Spreadsheet Link EX example files described in this
documentation

Spreadsheet Link EX uses Kernel32.dll, which should already be in the
appropriate Windows system folder (for example, C:\Winnt\system32). If
not, consult your system administrator.

After You Upgrade the Spreadsheet Link EX Software
If MATLAB and Spreadsheet Link EX are installed on your computer, to
upgrade to a newer version:

1 Install the new version of MATLAB and Spreadsheet Link EX.

2 Start MATLAB and a Microsoft Excel session.

3 Configure the Spreadsheet Link EX software.

4 If you have existing workbooks with macros that use Spreadsheet Link EX,
update references to Spreadsheet Link EX in each workbook.

To update the references in an existing workbook in Microsoft Excel 2003
and earlier:

1 In a Microsoft Excel session, open the Visual Basic® Editor window by
selecting Tools > Macros > Visual Basic Editor.

2 In the left pane, select a module for which you want to update a reference.

3 From the main menu, select Tools > References.

4 In the References dialog box, select the SpreadsheetLinkEX check box.

5 Click OK.

To update the references in an existing workbook in Microsoft Excel 2007
and later:

1 In a Microsoft Excel session, open the Visual Basic Editor window by
clicking Visual Basic on the Developer tab. (If you do not find the
Developer tab, see the Excel Help.)

1-6

Installation

2 In the left pane, select a module for which you want to update a reference.

3 From the main menu, select Tools > References.

4 In the References dialog box, select the SpreadsheetLink2007_2010
check box.

5 Click OK.

1-7

1 Getting Started

Add-In Setup

In this section...

“Configure Microsoft® Excel® 2003 and Earlier” on page 1-8

“Configure Microsoft® Excel® 2007 and Later” on page 1-9

“Work with the Microsoft® Visual Basic® Editor” on page 1-13

Configure Microsoft Excel 2003 and Earlier
To enable the Spreadsheet Link EX Add-In:

1 Start Microsoft Excel.

2 Select Tools > Add-Ins. The Add-Ins dialog box opens.

3 Click Browse.

4 Select matlabroot\toolbox\exlink\excllink2003.xla.

Note Throughout this document the notation matlabroot is the MATLAB
root folder, which is where MATLAB is installed on your system.

5 Click OK.

In the Add-Ins dialog box, the Spreadsheet Link EX for use with
MATLAB check box is selected.

6 Click OK to close the Add-Ins dialog box.

The Spreadsheet Link EX Add-In loads now and with each subsequent Excel
session.

The MATLAB Command Window button appears on the Microsoft
Windows taskbar.

1-8

Add-In Setup

The Spreadsheet Link EX toolbar appears on your Excel worksheet.

Spreadsheet Link EX is ready for use.

Configure Microsoft Excel 2007 and Later
To enable the Spreadsheet Link EX Add-In, start a Microsoft Excel session
and follow these steps.

If you use Microsoft Excel 2007:

1 Click , the Microsoft Office button.

2 Click Excel Options. The Excel Options dialog box opens.

If you use Microsoft Excel 2010 and later versions:

1 Select File from the main menu.

1-9

1 Getting Started

2 Click Options. The Excel Options dialog box opens.

The next steps are the same for both versions:

3 Click Add-Ins.

4 From the Manage selection list, choose Excel Add-Ins.

5 Click Go. The Add-Ins dialog box opens.

6 Click Browse.

7 Select matlabroot\toolbox\exlink\excllink.xlam.

8 Click Open. In the Add-Ins dialog box, the Spreadsheet Link EX for use
with MATLAB and Excel check box is selected.

1-10

Add-In Setup

9 Click OK to close the Add-Ins dialog box.

10 Click OK to close the Excel Options dialog box.

The Spreadsheet Link EX Add-In loads now and with each subsequent Excel
session.

The MATLAB Command Window button appears on the Microsoft
Windows taskbar.

The MATLAB group appears on the top right of the Home tab in your Excel
worksheet.

Spreadsheet Link EX is ready for use.

Right-click a cell to list the MATLAB options.

1-11

1 Getting Started

1-12

Add-In Setup

Caution Simultaneously using Add-Ins for 2003 and 2007 and later,
referenced in Excel 2007 and later, causes problems with the context-sensitive
menu. Use only one Add-In at a time to avoid this issue.

Work with the Microsoft Visual Basic Editor
To enable Spreadsheet Link EX as a Reference in the Microsoft Visual Basic
Editor:

1 Open a Visual Basic session.

• If you are running Excel 2003, select Tools > Macro > Visual Basic
Editor.

• If you are running Excel 2007 and later, click the Visual Basic button
on the Developer tab, or press Alt+F11.

Note For instructions about displaying the Developer tab, see Excel
Help.

2 In the Visual Basic toolbar, select Tools > References.

3 In the References — VBA Project dialog box, select the
SpreadsheetLinkEX or SpreadsheetLink2007_2010 check box.

4 Click OK.

1-13

1 Getting Started

Customization

In this section...

“Set Spreadsheet Link EX Preferences” on page 1-14

“Use Particular Versions of MATLAB” on page 1-15

Set Spreadsheet Link EX Preferences
Use the Preferences dialog box to set Spreadsheet Link EX preferences. Click
the preferences button in the Excel toolbar or MATLAB group to open
this dialog box.

Preferences include:

1-14

Customization

• Start MATLAB at Excel startup starts a MATLAB session automatically
when an Excel session starts. By default, this option is enabled.

• MATLAB startup folder lets you specify the startup folder for your
MATLAB session.

• Use MATLAB desktop starts the MATLAB desktop, including the current
folder, workspace, command history, and Command Window panes, when
an Excel session starts.

• Show MATLAB errors displays MATLAB error messages in Excel
worksheet cells. Without this option, worksheet cells display Excel error
messages. See “Worksheet Cell Errors” on page 3-2.

• Force use of MATLAB cell arrays with MLPutMatrix enables the
MLPutMatrix function to use cell arrays for data transfer between the Excel
software and the MATLAB workspace.

• Treat missing/empty cells as NaN sets data in missing or empty cells to
NaN or zero.

Use Particular Versions of MATLAB
If there are several versions on MATLAB installed on your computer, the
Spreadsheet Link EX software uses the last registered version. Typically, the
last registered version is the latest version you have installed. To change the
last registered version of MATLAB:

1 Shut down all MATLAB and Excel sessions.

2 Open a Command Prompt window, and using cd, change to the bin\win64
or bin\win32 subfolder of the MATLAB installation folder.

3 Enter the command:

.\matlab /regserver

1-15

1 Getting Started

Startup and Shutdown

In this section...

“Start Spreadsheet Link EX and MATLAB Automatically” on page 1-16

“Start Spreadsheet Link EX and MATLAB Manually” on page 1-16

“Connect to an Already Running MATLAB Session” on page 1-16

“Specify the MATLAB Startup Folder” on page 1-18

“Stop Spreadsheet Link EX and MATLAB” on page 1-18

Start Spreadsheet Link EX and MATLAB Automatically
When installed and configured according to the instructions in “Add-In Setup”
on page 1-8, the Spreadsheet Link EX and MATLAB software automatically
start when you start a Microsoft Excel session.

Start Spreadsheet Link EX and MATLAB Manually
1 Select Tools > Macro.

• In Excel 2007, click the View or Developer tab, and then click the
Macros button.

• In Excel 2010, click the View menu and select Macros on the Excel
toolstrip, and then click View Macros.

2 Enter matlabinit into the Macro Name/Reference field.

3 Click Run. The MATLAB Command Window button appears on the
Microsoft Windows taskbar.

Connect to an Already Running MATLAB Session
By default, Spreadsheet Link EX starts a new MATLAB session.
Alternatively, it can connect to an already running MATLAB session.

1-16

Startup and Shutdown

Note If several versions of MATLAB are installed on your computer,
Spreadsheet Link EX always uses the last registered version. If you try to
connect to an already running MATLAB session that is not the last registered
version, Spreadsheet Link EX starts a new MATLAB session rather than
connecting to the existing one. See how to change the last registered version
in “Use Particular Versions of MATLAB” on page 1-15.

To connect a new Excel session to an already running MATLAB session:

1 In MATLAB, enter the following command:

enableservice('AutomationServer',true)

This command converts a running MATLAB session into an Automation
server.

2 Start a new Excel session. It automatically connects to the running
MATLAB session.

Alternatively, you can start MATLAB as an automation server from the
beginning. To start MATLAB as an automation server, use the automation
command-line option:

matlab -automation

This command does not start MATLAB in a full desktop mode. To do so, use
the -desktop option:

matlab -automation -desktop

If you always use MATLAB as an automation server, modify the shortcut that
you use to start MATLAB:

1 Right-click your MATLAB shortcut icon. (You can use the icon on your
desktop or in the Windows Start menu.)

2 Select Properties.

3 Click the Shortcut tab.

1-17

1 Getting Started

4 Add the string -automation in the Target field. Remember to leave a
space between matlab.exe and /automation.

5 Click OK.

Specify the MATLAB Startup Folder
MATLAB starts in the MATLAB root folder and completes the initialization.
After starting, MATLAB changes to the Spreadsheet Link EX MATLAB
startup folder. For details about specifying the startup folder, see MLStartDir.

Stop Spreadsheet Link EX and MATLAB
If you started the Spreadsheet Link EX and MATLAB software from the
Excel interface:

• To stop both the Spreadsheet Link EX and MATLAB software, close the
Excel session as you normally would.

• To stop the Spreadsheet Link EX and MATLAB software and leave the
Excel session running, enter the =MLClose() command into an Excel
worksheet cell. You can use the MLOpen or matlabinit function to restart
the Spreadsheet Link EX and MATLAB sessions manually.

If you connected an Excel session to an existing MATLAB session, close Excel
and MATLAB sessions separately. Closing one session does not automatically
close the other.

1-18

MATLAB® Functions in Microsoft® Excel®

MATLAB Functions in Microsoft Excel

In this section...

“Spreadsheet Link EX and Microsoft® Excel® Functions” on page 1-19

“Types of Spreadsheet Link EX Functions” on page 1-19

“Use Spreadsheet Link EX Functions with Microsoft® Excel® 2007 and
Later” on page 1-20

“Use Worksheets” on page 1-23

“Work with Arguments” on page 1-24

“Use the MATLAB Function Wizard” on page 1-26

“Use Spreadsheet Link EX Functions in Macros” on page 1-31

Spreadsheet Link EX and Microsoft Excel Functions

• Spreadsheet Link EX functions perform an action, while Microsoft Excel
functions return a value.

• Spreadsheet Link EX function names are not case sensitive; that is,
MLPutMatrix and mlputmatrix are the same.

• MATLAB function names and variable names are case sensitive; that is,
BONDS, Bonds, and bonds are three different MATLAB variables.

Note Excel operations and function keys might behave differently with
Spreadsheet Link EX functions.

Types of Spreadsheet Link EX Functions
Spreadsheet Link EX functions manage the connection and data exchange
between the Excel software and the MATLAB workspace, without your ever
needing to leave the Excel environment. You can run functions as worksheet
cell formulas or in macros. The Spreadsheet Link EX software enables Excel
to act as an easy-to-use data-storage and application-development front end
for the MATLAB software, which is a powerful computational and graphical
processor.

1-19

1 Getting Started

There are two types of Spreadsheet Link EX functions: link management
functions and data management functions.

Link management functions initialize, start, and stop the Spreadsheet Link
EX and MATLAB software. You can run any link management function other
than matlabinit as a worksheet cell formula or in macros. You must run
the matlabinit function from the Excel Tools > Macro menu, or in macro
subroutines.

Data management functions copy data between the Excel software and
the MATLAB workspace, and execute MATLAB commands in the Excel
interface. You can run any data management function other than MLPutVar
and MLGetVar as a worksheet cell formula or in macros. The MLPutVar and
MLGetVar functions can run only in macros.

Use Spreadsheet Link EX Functions with Microsoft
Excel 2007 and Later

Execute a Function from the Microsoft Excel Ribbon
This example shows how to use the function mlputranges from the Microsoft
Excel Ribbon.

1 Start Microsoft Excel and start MATLAB.

2 Name and select a range in the worksheet.

3 Select Send named ranges to MATLAB using the MATLAB group that
appears on the top right of the Home tab in your Excel worksheet. When
you select this option, MATLAB executes mlputranges.

1-20

MATLAB® Functions in Microsoft® Excel®

Microsoft Excel exports the named range into a MATLAB variable.

Execute a Function from a Microsoft Excel Cell
This example shows how to use the function mlputranges from a cell in the
worksheet.

1 Start Microsoft Excel and start MATLAB.

2 Name and select a range in the worksheet.

3 Right-click a cell to list the MATLAB options.

1-21

1 Getting Started

1-22

MATLAB® Functions in Microsoft® Excel®

4 Select MATLAB > Send named ranges to MATLAB. When you select
this option, MATLAB executes mlputranges.

Microsoft Excel exports the named range into a MATLAB variable.

Use Worksheets

Enter Functions into Worksheet Cells
Spreadsheet Link EX functions expect A1-style worksheet cell references,
that is, columns designated with letters and rows with numbers (the default
reference style). If your worksheet shows columns designated with numbers
instead of letters:

1 Select Tools > Options.

2 Click the General tab.

3 Under Settings, clear the R1C1 reference style check box.

Enter Spreadsheet Link EX functions directly into worksheet cells as
worksheet formulas. Begin worksheet formulas with + or = and enclose
function arguments in parentheses. The following example uses MLPutMatrix
to put the data in cell C10 into matrix A:

=MLPutMatrix("A", C10)

For more information on specifying arguments in Spreadsheet Link EX
functions, see “Work with Arguments” on page 1-24.

Caution: Do not use the Excel Function Wizard. It can generate
unpredictable results.

After a Spreadsheet Link EX function successfully executes as a worksheet
formula, the cell contains the value 0. While the function executes, the cell
might continue to show the formula you entered.

1-23

1 Getting Started

To change the active cell when an operation completes, select Excel Tools
Options > Edit > Move Selection after Enter. This action provides a
useful confirmation for lengthy operations.

Automatic Calculation Mode vs. Manual Calculation Mode
Spreadsheet Link EX functions are most effective in automatic calculation
mode. To automate the recalculation of a Spreadsheet Link EX function, add
to it a cell whose value changes. In the following example, the MLPutMatrix
function executes again when the value in cell C1 changes:

=MLPutMatrix("bonds", D1:G26) + C1

Caution: Be careful to avoid creating endless recalculation loops.

To use MLGetMatrix in manual calculation mode:

1 Enter the function into a cell.

2 Press F2.

3 Press Enter. The function executes.

Spreadsheet Link EX functions do not automatically adjust cell addresses.
If you use explicit cell addresses in a function, you must edit the function
arguments to reference a new cell address when you do either of the following:

• Insert or delete rows or columns.

• Move or copy the function to another cell.

Note Pressing F9 to recalculate a worksheet affects only Excel functions.
This key does not operate on Spreadsheet Link EX functions.

Work with Arguments
This section describes tips for managing variable-name arguments and
data-location arguments in Spreadsheet Link EX functions.

1-24

MATLAB® Functions in Microsoft® Excel®

Variable-Name Arguments

• You can directly or indirectly specify a variable-name argument in most
Spreadsheet Link EX functions:

- To specify a variable name directly, enclose it in double quotation marks;
for example, MLDeleteMatrix("Bonds").

- To specify a variable name as an indirect reference, enter it without
quotation marks. The function evaluates the contents of the argument to
get the variable name. The argument must be a worksheet cell address
or range name, for example, MLDeleteMatrix(C1).

Note Spreadsheet Link EX functions do not support global variables. When
exchanging data between Excel and MATLAB, the base workspace is used.
Variables in the base workspace exist until you clear them or end your
MATLAB session.

Data-Location Arguments

• A data-location argument must be a worksheet cell address or range name.

• Do not enclose a data-location argument in quotation marks (except in
MLGetMatrix, which has unique argument conventions).

• A data-location argument can include a worksheet number; for example,
Sheet3!B1:C7 or Sheet2!OUTPUT.

Tip: You can reference special characters as part of a worksheet name in
MLGetMatrix or MLPutMatrix by embedding the worksheet name within
single quotation marks ('').

1-25

1 Getting Started

Use the MATLAB Function Wizard
The MATLAB Function Wizard for the Spreadsheet Link EX software lets
you browse MATLAB folders and run functions from the Excel interface.

1-26

MATLAB® Functions in Microsoft® Excel®

1 List all MATLAB working folders and function categories.

All folders or categories in the current MATLABPATH appear in the Select
a category field. Click an entry in the list to select it. Each entry in the
list appears as a folder path and a description read from the Contents.m
file in that folder. If no Contents.m file is found, the folder or category
display notifies you as follows:

finance\finsupport -(No table of contents file)

To refresh the folder/category list, click Update.

2 Select a particular folder or category, and list functions available for that
folder or category.

After you select a folder or category, the Select a function field displays
available functions for that folder or category. Click a function name to
select it.

Tip: The Function Wizard prohibits access to MATLAB constructors and
methods. You can write a wrapper function for a method or a constructor
and access that wrapper. See “Use the Function Wizard to Access Custom
MATLAB Functions” on page 1-29.

3 Select a function signature and enter a formula into the current
spreadsheet cell.

After you select a function, the Select a function signature field displays
available signatures for that function. Click a function signature to select it.

4 View help for the selected function.

The Function Help field displays help for the selected function.

When you click a function signature, the Function Arguments dialog box
appears.

1-27

1 Getting Started

This dialog box lets you specify the cells that contain input arguments and
the cells where to display outputs. By default, the output of the selected
function appears in the current spreadsheet cell using the Spreadsheet Link
EX function matlabfcn. In the following example, the output appears in the
current spreadsheet cell and generates a MATLAB figure:

=matlabfcn("plot",Sheet1!B2:D4)

Specifying a target range of cells using the Optional output cell(s) field in
the Function Arguments dialog box causes the selected function to appear in
the current spreadsheet cell as an argument of the matlabsub function. In
addition, matlabsub includes an argument that indicates where to write the
function’s output. In the following example, the data from A2 is input to the
rand function, whose target cell is B2:

=matlabsub("rand","Sheet1!B2",Sheet1!A2)

Tip Although the Function Wizard lets you specify multiple output cells, it
does not return multiple outputs. If you specify a range of output cells, the
wizard returns the first output argument starting in the first output cell.

1-28

MATLAB® Functions in Microsoft® Excel®

For example, if a function returns two separate elements a and b, and you
specify A1:A2 as output cells, the Function Wizard displays element a in
cell A1. It discards element b. If an output is a matrix, the Function Wizard
displays all elements of that matrix starting in the first output cell.

Use the Function Wizard to Access Custom MATLAB Functions

1 In MATLAB, create and save your function. Create a help header in your
function that contains supported function signatures to use with the
MATLAB Function Wizard. For example, write the function that computes
the Fibonacci numbers and save it in the folder Documents\MATLAB:

function f = fibonacci(n)
%FIBONACCI(N) Compute the Nth Fibonacci number.
% N must be a positive integer.
if n < 0

error('Invalid number.')
elseif n == 0

f = 0;
elseif n == 1

f = 1;
else

f = fibonacci(n - 1) + fibonacci(n - 2);
end;
end

2 Add the folder where you saved the function to the MATLAB search path.
To add the folder to the search path, use the pathtool function or select
Set Path in the MATLAB Toolstrip.

3 In Excel, open the MATLAB Function Wizard and select the folder where
you saved your function.

1-29

1 Getting Started

The Function Wizard does not let you access MATLAB constructors and
methods. To access a method or a constructor from the Function Wizard,
write a wrapper function for that method or constructor. For example, to
access the timeseries(DATA) constructor from the Function Wizard, write
the following wrapper function:

1-30

MATLAB® Functions in Microsoft® Excel®

function TS = timeseries_wrapper(DATA)
% timeseries_wrapper(DATA) is a wrapper function
% for TIMESERIES(DATA)
% TS = TIMESERIES(DATA) creates a time series object TS using
% data DATA. By default, the time vector ranges from 0 to N-1,
% where N is the number of samples, and has an interval of 1
% second. The default name of the TS object is 'unnamed'.
T = timeseries(DATA);
TS = T.data;
end

Use Spreadsheet Link EX Functions in Macros

About the Examples
These examples show how to manipulate MATLAB data using Spreadsheet
Link EX.

• For an example of how to exchange data between the MATLAB and Excel
workspaces, see “Import and Export Data Between the Microsoft® Excel®

Interface and the MATLAB Workspace” on page 1-34.

• For an example of how to export data from the MATLAB workspace and
display it in an Excel worksheet, see “Send MATLAB Data to an Excel
Worksheet and Displaying the Results” on page 1-31.

Send MATLAB Data to an Excel Worksheet and Displaying the
Results
This example shows how to run MATLAB commands using VBA, send
MATLAB data to the Excel software, and display the results in an Excel
dialog box.

1 Start an Excel session.

2 Initialize the MATLAB session by clicking the startmatlab button in the
Spreadsheet Link EX toolbar or by running the matlabinit function.

3 If the Spreadsheet Link EX Add-In is not enabled, enable it.

1-31

1 Getting Started

• For instructions on enabling this Add-In for the Excel 2003 software, see
“Configure Microsoft® Excel® 2003 and Earlier” on page 1-8.

• For instructions on enabling this Add-In for the Excel 2007 software, see
“Configure Microsoft® Excel® 2007 and Later” on page 1-9.

4 Enable the Spreadsheet Link EX software as a Reference in the Microsoft
Visual Basic Editor. For instructions, see “Work with the Microsoft® Visual
Basic® Editor” on page 1-13.

5 In the Visual Basic Editor, create a module.

a Right-click the Microsoft Excel Objects folder in the Project —
VBAProject browser.

b Select Insert > Module.

6 Enter the following code into the module window:

Option Base 1
Sub Method1()

MLShowMatlabErrors "yes"

'''To MATLAB:
Dim Vone(2, 2) As Double 'Input
Vone(1, 1) = 1
Vone(1, 2) = 2
Vone(2, 1) = 3
Vone(2, 2) = 4

MLPutMatrix "a", Range("A1:B2")
MLPutVar "b", Vone
MLEvalString ("c = a*b")
MLEvalString ("d = eig(c)")

'''From MATLAB:
Dim Vtwo As Variant 'Output
MLGetVar "c", Vtwo
MsgBox "c is " & Vtwo(1, 1)

1-32

MATLAB® Functions in Microsoft® Excel®

MLGetMatrix "b", Range("A7:B8").Address
MatlabRequest
MLGetMatrix "c", "Sheet1!A4:B5"
MatlabRequest

Sheets("Sheet1").Select
Range("A10").Select
MLGetMatrix "d", ActiveCell.Address
MatlabRequest

End Sub

Tip: Copy and paste this code into the Visual Basic Editor from the HTML
version of the documentation.

7 Run the code. Press F5 or select Run > Run Sub/UserForm.

The following dialog box appears.

8 Click OK to close the dialog box.

Note Do not include MatlabRequest in a macro function unless the macro
function is called from a subroutine.

1-33

1 Getting Started

Tip: In macros, leave a space between the function name and the first
argument. Do not use parentheses.

Import and Export Data Between the Microsoft Excel Interface
and the MATLAB Workspace

• This example uses MLGetMatrix in a macro subroutine to export data from
the MATLAB matrix A into the Excel worksheet Sheet1.

Sub Test1()
MLGetMatrix "A", "Sheet1!A5"
MatlabRequest

End Sub

Note The MatlabRequest function initializes internal Spreadsheet Link
EX variables and enables MLGetMatrix to function in the subroutine.

• This example uses MLPutMatrix in a macro subroutine to import data into
the MATLAB matrix A, from a specified cell range in the Excel worksheet
Sheet1.

Sub Test2()
Set myRange = Range("A1:C3")
MLPutMatrix "A", myRange

End Sub

See Also MLPutMatrix | MLGetMatrix | MLPutRanges | MLPutVar | MLGetVar |
matlabinit | matlabfcn | matlabsub | pathtool

Related
Examples

• “Configure Microsoft® Excel® 2003 and Earlier” on page 1-8
• “Configure Microsoft® Excel® 2007 and Later” on page 1-9
• “Work with the Microsoft® Visual Basic® Editor” on page 1-13

1-34

Work with Dates

Work with Dates
Default Microsoft Excel date numbers represent the number of days that have
passed since January 1, 1900. For example, January 1, 1950 is represented as
18264 in the Excel software.

However, MATLAB date numbers represent the number of days that have
passed since January 1, 0000, so January 1, 1950 is represented as 712224
in the MATLAB software. Therefore, the difference in dates between the
Excel software and the MATLAB software is a constant, 693960 (712224
minus 18264).

To use date numbers in MATLAB calculations, apply the 693960 constant as
follows:

• Add it to Excel date numbers that are read into the MATLAB software.

• Subtract it from MATLAB date numbers that are read into the Excel
software.

Note If you use the optional Excel 1904 date system, the constant is
695422.

Dates are stored internally in the Excel software as numbers and are
unaffected by locale.

1-35

1 Getting Started

Localization Information
This document uses the Microsoft Excel software with an English (United
States) Microsoft Windows regional setting for illustrative purposes. If you
use the Spreadsheet Link EX software with a non-English (United States)
Windows desktop environment, certain syntactical elements may not work as
illustrated. For example, you may have to replace the comma (,) delimiter
within Spreadsheet Link EX commands with a semicolon (;) or other operator.

Please consult your Windows documentation to determine which regional
setting differences exist among non-U.S. versions.

1-36

2

Solving Problems with
the Spreadsheet Link EX
Software

• “Model Data Using Regression and Curve Fitting” on page 2-2

• “Interpolate Data” on page 2-11

• “Price Stock Options Using the Binomial Model” on page 2-15

• “Compute Efficient Frontier of Financial Portfolios” on page 2-19

• “Map Time and Bond Cash Flows” on page 2-24

2 Solving Problems with the Spreadsheet Link™ EX Software

Model Data Using Regression and Curve Fitting

In this section...

“Using Worksheets” on page 2-2

“Using Macros” on page 2-6

Regression techniques and curve fitting attempt to find functions that
describe the relationship among variables. In effect, they attempt to build
mathematical models of a data set. MATLAB matrix operators and functions
simplify this task.

This example shows both data regression and curve fitting. It also executes
the same example in a worksheet version and a macro version. The
example uses Microsoft Excel worksheets to organize and display the data.
Spreadsheet Link EX functions copy the data to the MATLAB workspace, and
then executes MATLAB computational and graphic functions. The macro
version also returns output data to an Excel worksheet.

This example is included in the Spreadsheet Link EX product. To run it:

1 Start Excel, Spreadsheet Link EX, and MATLAB sessions.

2 Navigate to the folder matlabroot\toolbox\exlink\.

3 Open the file ExliSamp.xls

4 Execute the example as needed.

Using Worksheets

1 Click the Sheet1 tab on the ExliSamp.xls window. The worksheet for
this example appears.

2-2

Model Data Using Regression and Curve Fitting

The worksheet contains one named range: A4:C28 is named DATA and
contains the data set for this example.

2 Make E5 the active cell. Press F2; then press Enter to execute the
Spreadsheet Link EX function that copies the sample data set to the
MATLAB workspace. The data set contains 25 observations of three
variables. There is a strong linear dependence among the observations; in
fact, they are close to being scalar multiples of each other.

3 Move to cell E8 and press F2; then press Enter. Repeat with cells E9 and
E10. These Spreadsheet Link EX functions regress the third column of data
on the other two columns, and create the following:

• A single vector y containing the third-column data.

• A three-column matrix A, that consists of a column of ones followed by
the rest of the data.

2-3

2 Solving Problems with the Spreadsheet Link™ EX Software

4 Execute the function in cell E13. This function computes the regression
coefficients by using the MATLAB back slash (\) operation to solve the
(overdetermined) system of linear equations, A*beta = y.

5 Execute the function in cell E16. MATLAB matrix-vector multiplication
produces the regressed result (fit).

6 Execute the functions in cells E19, E20, and E21. These functions do the
following:

a Compare the original data with fit.

b Sort the data in increasing order and apply the same permutation to fit.

c Create a scalar for the number of observations.

7 Execute the functions in cells E24 and E25. Often it is useful to fit a
polynomial equation to data. To do so, you would ordinarily have to set up
a system of simultaneous linear equations and solve for the coefficients.
The MATLAB polyfit function automates this procedure, in this case for a
fifth-degree polynomial. The polyval function then evaluates the resulting
polynomial at each data point to check the goodness of fit (newfit).

8 Execute the function in cell E28. The MATLAB plot function graphs the
original data (blue circles), the regressed result fit (dashed red line), and
the polynomial result (solid green line). It also adds a legend.

2-4

Model Data Using Regression and Curve Fitting

Since the data is closely correlated but not exactly linearly dependent, the
fit curve (dashed line) shows a close, but not an exact, fit. The fifth-degree
polynomial curve, newfit, is a more accurate mathematical model for the data.

When you finish this version of the example, close the figure window.

2-5

2 Solving Problems with the Spreadsheet Link™ EX Software

Using Macros

1 Click the Sheet2 tab on ExliSamp.xls. The worksheet for this example
appears.

2-6

Model Data Using Regression and Curve Fitting

2 Make cell A4 the active cell, but do not execute it yet.

Cell A4 calls the macro CurveFit, which you can examine in the Microsoft
Visual Basic environment.

3 While this module is open, make sure that the Spreadsheet Link EX add-in
is enabled.

• If you are using the Excel 2003 software:

a Click Tools > References.

2-7

2 Solving Problems with the Spreadsheet Link™ EX Software

b In the References dialog box, make sure that the excllink.xla check
box is selected. If not, select it.

c Click OK.

• If you are using the Excel 2007 software:

d Click the Microsoft Office Button, .

e Click Options. The Excel Options pane appears.

f Click Add-Ins.

g From the Manage selection list, choose Excel Add-Ins.

h Click Go. The Add-Ins pane appears.

i Make sure that the Spreadsheet Link EX for use with MATLAB
check box is selected. If not, select it.

2-8

Model Data Using Regression and Curve Fitting

j Click OK to close the Add-Ins pane.

k Click OK to close the Excel Options pane.

4 In cell A4 of Sheet2, press F2; then press Enter to execute the CurveFit
macro. The macro does the following:

a Runs the same functions as the worksheet example (in a slightly
different order), including plotting the graph.

b Calls the MLGetMatrix function in the CurveFit macro. This macro
copies to the worksheet the original data y (sorted), the corresponding
regressed data fit, and the polynomial data newfit.

2-9

2 Solving Problems with the Spreadsheet Link™ EX Software

2-10

Interpolate Data

Interpolate Data
Interpolation is a process for estimating values that lie between known data
points. It is important for applications such as signal and image processing
and data visualization. MATLAB interpolation functions let you balance the
smoothness of data fit with execution speed and efficient memory use.

This example is included in the Spreadsheet Link EX product. To run it:

1 Start Excel, Spreadsheet Link EX, and MATLAB sessions.

2 Navigate to the folder matlabroot\toolbox\exlink\.

3 Open the file ExliSamp.xls

4 Execute the example as needed.

This example uses a two-dimensional data-gridding interpolation function
on thermodynamic data, where volume has been measured for time
and temperature values. It finds the volume values underlying the
two-dimensional, time-temperature function for a new set of time and
temperature coordinates.

The example uses a Microsoft Excel worksheet to organize and display the
original data and the interpolated output data. You use Spreadsheet Link
EX functions to copy the data to and from the MATLAB workspace, and then
execute the MATLAB interpolation function. Finally, you invoke MATLAB
graphics to display the interpolated data in a three-dimensional color surface.

1 Click the Sheet3 tab on ExliSamp.xls. The worksheet for this example
appears.

2-11

2 Solving Problems with the Spreadsheet Link™ EX Software

The worksheet contains the measured thermodynamic data in cells A5:A29,
B5:B29, and C5:C29. The time and temperature values for interpolation
are in cells E7:E30 and F6:T6, respectively.

2 Make A33 the active cell. Press F2; then press Enter to execute the
Spreadsheet Link EX function that passes the Time, Temp, and Volume
labels to the MATLAB workspace.

3 Make A34 the active cell. Press F2; then press Enter to execute the
Spreadsheet Link EX function that copies the original time data to the
MATLAB workspace. Move to cell A35 and execute the function to copy the

2-12

Interpolate Data

original temperature data. Execute the function in cell A36 to copy the
original volume data.

4 Move to cell A39 and press F2; then press Enter to copy the interpolation
time values to the MATLAB workspace. Execute the function in cell A40 to
copy the interpolation temperature values.

5 Execute the function in cell A43. griddata is the MATLAB two-dimensional
interpolation function that generates the interpolated volume data using
the inverse distance method.

6 Execute the functions in cells A46 and A47 to transpose the interpolated
volume data and copy it to the Excel worksheet. The data fills cells F7:T30,
which are enclosed in a border.

7 Execute the function in cell A50. The MATLAB software plots and labels
the interpolated data on a three-dimensional color surface, with the color
proportional to the interpolated volume data.

2-13

2 Solving Problems with the Spreadsheet Link™ EX Software

When you finish the example, close the figure window.

2-14

Price Stock Options Using the Binomial Model

Price Stock Options Using the Binomial Model
The Financial Toolbox™ product provides functions that compute prices,
sensitivities, and profits for portfolios of options or other equity derivatives.
This example uses the binomial model to price an option. The binomial
model assumes that the probability of each possible price over time follows a
binomial distribution. That is, prices can move to only two values, one up or
one down, over any short time period. Plotting these two values over time is
known as building a binomial tree.

This example organizes and displays input and output data using a Microsoft
Excel worksheet. Spreadsheet Link EX functions copy data to a MATLAB
matrix, calculate the prices, and return data to the worksheet.

This example is included in the Spreadsheet Link EX product. To run it:

1 Start Excel, Spreadsheet Link EX, and MATLAB sessions.

2 Navigate to the folder matlabroot\toolbox\exlink\.

3 Open the file ExliSamp.xls

4 Execute the example as needed.

Note This example requires Financial Toolbox, Statistics Toolbox™, and
Optimization Toolbox™.

1 Click the Sheet4 tab on ExliSamp.xls to open the worksheet for this
example.

2-15

2 Solving Problems with the Spreadsheet Link™ EX Software

The worksheet contains three named ranges:

• B4:B10 named bindata. Two cells in bindata contain formulas:

– B7 contains =5/12

– B8 contains =1/12

• B15 named asset_tree.

• B23 named value_tree.

2 Make D5 the active cell. Press F2; then press Enter to execute the
Spreadsheet Link EX function that copies the asset data to the MATLAB
workspace.

3 Move to D8 and execute the function that computes the binomial prices.

2-16

Price Stock Options Using the Binomial Model

4 Execute the functions in D11 and D12 to copy the price data to the Excel
worksheet.

The worksheet looks as follows.

Read the asset price tree as follows:

• Period 1 shows the up and down prices.

• Period 2 shows the up-up, up-down, and down-down prices.

• Period 3 shows the up-up-up, up-up, down-down, and down-down-down
prices.

• And so on.

2-17

2 Solving Problems with the Spreadsheet Link™ EX Software

Ignore the zeros. The option value tree gives the associated option value for
each node in the price tree. The option value is zero for prices significantly
above the exercise price. Ignore the zeros that correspond to a zero in the
price tree.

5 Try changing the data in B4:B10, and then executing the Spreadsheet Link
EX functions again.

Note If you increase the time to maturity (B7) or change the time
increment (B8), you may need to enlarge the output tree areas.

6 When you finish the example, close the figure window.

2-18

Compute Efficient Frontier of Financial Portfolios

Compute Efficient Frontier of Financial Portfolios
MATLAB and Financial Toolbox functions compute and plot risks, variances,
rates of return, and the efficient frontier of portfolios. Efficient portfolios have
the lowest aggregate variance, or risk, for a given return. Microsoft Excel
and the Spreadsheet Link EX software let you set up data, execute financial
functions and MATLAB graphics, and display numeric results.

This example analyzes three portfolios, using rates of return for six time
periods. In actual practice, these functions can analyze many portfolios over
many time periods, limited only by the amount of computer memory available.

This example is included in the Spreadsheet Link EX product. To run it:

1 Start Excel, Spreadsheet Link EX, and MATLAB sessions.

2 Navigate to the folder matlabroot\toolbox\exlink\.

3 Open the file ExliSamp.xls

4 Execute the example as needed.

Note This example requires Financial Toolbox, Statistics Toolbox, and
Optimization Toolbox.

1 Click the Sheet5 tab on ExliSamp.xls. The worksheet for this example
appears.

2-19

2 Solving Problems with the Spreadsheet Link™ EX Software

2 Make A15 the active cell. Press F2; then press Enter. The Spreadsheet
Link EX function transfers the labels that describe the output that the
MATLAB software computes.

3 Make A16 the active cell to copy the portfolio return data to the MATLAB
workspace.

4 Execute the functions in A19 and A20 to compute the Financial Toolbox
efficient frontier function for 20 points along the frontier.

5 Execute the Spreadsheet Link EX functions in A23, A24, and A25 to copy
the output data to the Excel worksheet.

The worksheet looks as follows.

2-20

Compute Efficient Frontier of Financial Portfolios

The data describes the efficient frontier for these three portfolios: that set
of points representing the highest rate of return (ROR) for a given risk. For
each of the 20 points along the frontier, the weighted investment in each
portfolio (Weights) would achieve that rate of return.

6 Now move to A28 and press F2; then press Enter to execute the Financial
Toolbox function that plots the efficient frontier for the same portfolio data.

The following figure appears.

2-21

2 Solving Problems with the Spreadsheet Link™ EX Software

The light blue line shows the efficient frontier. Note the change in slope
above a 6.8% return because the Corporate Bond portfolio no longer
contributes to the efficient frontier.

7 To try running this example using different data, close the figure window
and change the data in cells B4:D9. Then execute all the Spreadsheet Link

2-22

Compute Efficient Frontier of Financial Portfolios

EX functions again. The worksheet then shows the new frontier data, and
the MATLAB software displays a new efficient frontier graph.

When you finish this example, close the figure window.

2-23

2 Solving Problems with the Spreadsheet Link™ EX Software

Map Time and Bond Cash Flows
This example shows how to use the Financial Toolbox and Spreadsheet Link
EX software to compute a set of cash flow amounts and dates, given a portfolio
of five bonds with known maturity dates and coupon rates. It is included in
the Spreadsheet Link EX product. To run it:

1 Start Excel, Spreadsheet Link EX, and MATLAB sessions.

2 Navigate to the folder matlabroot\toolbox\exlink\.

3 Open the file ExliSamp.xls

4 Execute the example as needed.

Note This example requires Financial Toolbox, Statistics Toolbox, and
Optimization Toolbox.

1 Click the Sheet6 tab on ExliSamp.xls. The worksheet for this example
appears.

2-24

Map Time and Bond Cash Flows

2 Make A18 the active cell. Press F2, then Enter to execute the Spreadsheet
Link EX function that transfers the column vector Maturity to the
MATLAB workspace.

3 Make A19 the active cell to transfer the column vector Coupon Rate to the
MATLAB workspace.

4 Make A20 the active cell to transfer the settlement date to the MATLAB
workspace.

5 Execute the functions in cells A23 and A24 to enable the Financial Toolbox
software to compute cash flow amounts and dates.

2-25

2 Solving Problems with the Spreadsheet Link™ EX Software

6 Now execute the functions in cells A27 through A29 to transform the dates
into string form contained in a cell array.

7 Execute the functions in cells A32 through A34 to transfer the data to the
Excel worksheet.

8 Finally, execute the function in cell A37 to display a plot of the cash flows
for each portfolio item.

2-26

Map Time and Bond Cash Flows

9 When you finish the example, close the figure window.

2-27

2 Solving Problems with the Spreadsheet Link™ EX Software

2-28

3

Error Messages and
Troubleshooting

• “Worksheet Cell Errors” on page 3-2

• “Microsoft® Excel® Errors” on page 3-5

• “Data Errors” on page 3-9

• “License Errors” on page 3-11

• “Startup Errors” on page 3-12

• “Audible Error Signals” on page 3-13

3 Error Messages and Troubleshooting

Worksheet Cell Errors
You might see these error messages displayed in a worksheet cell.

The first column contains worksheet cell error messages. The error messages
begin with the number sign (#). Most end with an exclamation point (!) or
with a question mark (?).

Worksheet Cell Error Messages

Error Message Meaning Solution

#COLS>#MAXCOLS! Your MATLAB variable exceeds
the Microsoft Excel limit of
#MAXCOLS! columns.

This is a limitation in the Excel
product. Try the computation
with a variable containing fewer
columns.

#COMMAND! The MATLAB software does not
recognize the command in an
MLEvalString function. The
command might be misspelled.

Verify the spelling of theMATLAB
command. Correct typing errors.

#DIMENSION! You used MLAppendMatrix and
the dimensions of the appended
data do not match the dimensions
of the matrix you want to append.

Verify the matrix dimensions and
the appended data dimensions,
and correct the argument.
For more information, see the
MLAppendMatrix reference page.

#INVALIDNAME! You entered an illegal variable
name.

Make sure to use legal MATLAB
variable names. MATLAB
variable names must start with a
letter followed by up to 30 letters,
digits, or underscores.

#INVALIDTYPE! You specified an illegal MATLAB
data type with MLGetVar or
MLGetMatrix.

Make sure to use the supported
MATLAB data types.

#MATLAB? You used a Spreadsheet Link
EX function and no MATLAB
software session is running.

Start the Spreadsheet Link EX
and MATLAB software. See
“Startup and Shutdown” on page
1-16.

3-2

Worksheet Cell Errors

Worksheet Cell Error Messages (Continued)

Error Message Meaning Solution

#NAME? The function name is
unrecognized. The excllink.xla
add-in is not loaded, or the
function name might be
misspelled.

Be sure the excllink.xla add-in
is loaded. See “Add-In Setup” on
page 1-8. Check the spelling of
the function name. Correct typing
errors.

#NONEXIST! You referenced a nonexistent
matrix in an MLGetMatrix or
MLDeleteMatrix function. The
matrix namemight be misspelled.

Also, you receive the #NONEXIST!
error when you attempt to use
matlabfcn to obtain an output.

Verify the spelling of theMATLAB
matrix. Use the MATLAB whos
command to display existing
matrices. Correct typing errors.

#ROWS>#MAXROWS! Your MATLAB variable exceeds
the Excel limit of #MAXROWS!
rows.

This is a limitation in the Excel
product. Try the computation
with a variable containing fewer
rows.

#SYNTAX? You entered a Spreadsheet
Link EX function with incorrect
syntax. For example, you did
not specify double quotation
marks ("), or you specified single
quotation marks (’) instead of
double quotation marks.

Verify and correct the function
syntax.

#VALUE! An argument is missing from a
function, or a function argument
is the wrong type.

Supply the correct number of
function arguments, of the correct
type.

3-3

3 Error Messages and Troubleshooting

Worksheet Cell Error Messages (Continued)

Error Message Meaning Solution

#VALUE! A macro subroutine uses
MLGetMatrix followed by
MatlabRequest, which is correct
standard usage. A macro function
calls that subroutine, and you
execute that function from a
worksheet cell. The function
works correctly, but this message
appears in the cell.

Since the function works correctly,
ignore the message. Or, in
this special case, remove
MatlabRequest from the
subroutine.

#INVALIDRANGE! The named range is defined
incorrectly, or the named range
spans multiple worksheets.

Select a range of data on only
one worksheet and create an
appropriate name for the range
of data. For instructions about
defining names, see Excel Help.

Note When you open an Excel worksheet that contains Spreadsheet Link
EX functions, the Excel software tries to execute the functions from the
bottom up and right to left. Excel might generate cell error messages such as
#COMMAND! or #NONEXIST!. This is expected behavior, so ignore the messages
and do the following:

1 Close the MATLAB figure windows.

2 Execute the cell functions again one at a time in the correct order by
pressing F2, and then Enter.

3-4

Microsoft® Excel® Errors

Microsoft Excel Errors
The Excel software may display one of the following error messages.

Excel Error Messages

Error Message Cause of Error Solution

Error in formula You entered a formula
incorrectly. Common errors
include a space between the
function name and the left
parenthesis; or missing, extra,
or mismatched parentheses.

Note If you use the
Spreadsheet Link EX
software with a non-English
(United States) Windows
desktop environment, certain
syntactical elements may not
work. For more information,
see “Localization Information”
on page 1-36.

Check entry and correct typing
errors.

Can't find project or
library

You tried to execute a
macro and the location of
excllink.xla is incorrect.

Click OK. The References
window opens. Remove
the check from MISSING:
excllink.xla. Find
excllink.xla in its correct
location, select its check box in
the References window, and
click OK.

3-5

3 Error Messages and Troubleshooting

Excel Error Messages (Continued)

Error Message Cause of Error Solution

Run-time error '1004':
Cells method of
Application class failed

You used MLGetMatrix and the
matrix is larger than the space
available in the worksheet.
This error destabilizes the
Spreadsheet Link EX software
session and changes worksheet
calculation mode to manual.

Click OK. Reset worksheet
calculation mode to
automatic, and save your
worksheet as needed. Restart
the Excel, Spreadsheet Link
EX, and MATLAB software
sessions.

MATLAB failed to
check out a license
of Spreadsheet Link
EX or does not have a
valid installation of
Spreadsheet Link EX

You entered an invalid
license passcode or did not
install Spreadsheet Link EX
properly.

Check that you entered
the license passcode properly.
Reinstall the Spreadsheet Link
EX add-on. (See “Installation”
on page 1-5.) If you followed
the installation guidelines,
used a proper passcode
and you are still unable to
start the Spreadsheet Link
EX software, contact your
MathWorks® representative.

Datasource: Excel;
prompt for user name
and password

This message appears when an
attempt to connect to the Excel
software from the Database
Toolbox™ software fails.

Make sure that the Excel
spreadsheet referenced by the
data source exists, then retry
the connection.

Could not load some
objects because they
are not available on this
machine

This message appears when
Excel 2013 is not configured
properly.

Click on Start button. Select
Control Panel. Select
Programs and Features.
Right-click on the Microsoft
Office 2010 program. Click
on Change. Then, click on
Add or Remove Features.
Click on the drop down arrow
which is before the Microsoft
Office. Click on Run all
from my computer and then
click on Continue. Once the
process completes, restart the

3-6

Microsoft® Excel® Errors

Excel Error Messages (Continued)

Error Message Cause of Error Solution

computer and then open Excel
to check if the issue occurs.

3-7

3 Error Messages and Troubleshooting

Excel Error Message Boxes

Error Message Box Cause of Error Solution

This error appears
when you start
the automation
server from the
Excel interface,
and multiple
versions of the
MATLAB software
are installed on
your desktop.

To correct this error, perform the
following:

1 Shut down all MATLAB and Excel
instances.

2 Open a Command Prompt window,
and using cd, change to the bin\win32
subfolder of the MATLAB installation
folder.

3 Type the command:

.\matlab /regserver

4 When the MATLAB session starts, close
it. Using /regserver fixes the registry
entries.

5 Start an Excel session. The Spreadsheet
Link EX add-in now loads properly.

6 Verify that the Spreadsheet Link EX
software is working by entering the
following command from the MATLAB
Command Window:

a = 3.14159

7 Enter the following formula in cell A1 of
the open Excel worksheet:

=mlgetmatrix("a","a1")

8 The value 3.14159 appears in cell A1.

3-8

Data Errors

Data Errors

In this section...

“Matrix Data Errors” on page 3-9

“Errors When Opening Saved Worksheets” on page 3-9

Matrix Data Errors
Data in the MATLAB or Microsoft Excel workspaces may produce the
following errors.

Data Errors

Data Error Cause Solution

MATLAB matrix cells
contain zeros (0).

Corresponding Excel worksheet
cells are empty.

Excel worksheet cells must
contain only numeric or string
data.

MATLAB matrix is a
1-by-1 zero matrix.

You used quotation marks
around the data-location
argument in MLPutMatrix or
MLAppendMatrix.

Correct the syntax to remove
quotation marks.

MATLAB matrix is
empty ([]).

You referenced a nonexistent
VBA variable in MLPutVar.

Correct the macro; you may
have typed the variable name
incorrectly.

VBA matrix is empty. You referenced a nonexistent
MATLAB variable in MLGetVar.

Correct the macro; you may
have typed the variable name
incorrectly.

Errors When Opening Saved Worksheets
This section describes errors that you may encounter when opening saved
worksheets.

• When you open an Excel worksheet that contains Spreadsheet Link EX
functions, the Excel software tries to execute the functions from the bottom

3-9

3 Error Messages and Troubleshooting

up and right to left. Excel may generate cell error messages such as
#COMMAND! or #NONEXIST!. This is expected behavior. Do the following:

1 Ignore the messages.

2 Close MATLAB figure windows.

3 Execute the cell functions again one at a time in the correct order by
pressing F2, and then Enter.

• If you save an Excel worksheet containing Spreadsheet Link EX functions,
and then reopen it in an environment where the excllink.xla add-in is in
a different location, you may see the message: This document contains
links: Re-establish links?

To address this issue, do the following:

1 Click No.

2 Select Edit > Links.

3 In the Links dialog box, click Change Source.

4 In the Change Links dialog box, select
matlabroot\toolbox\exlink\excllink.xla.

5 Click OK.

The Excel software executes each function as it changes its link. You
may see MATLAB figure windows and hear error beeps as the links
change and functions execute; ignore them.

6 In the Links dialog box, click OK.

The worksheet now connects to the Spreadsheet Link EX add-in.

Or, instead of using the Links menu, you can manually edit the link
location in each affected worksheet cell to show the correct location of
excllink.xla.

3-10

License Errors

License Errors
If you are running an automation server of MATLAB that does not have a
Spreadsheet Link EX license associated with it, you will receive an license
error message. To correct this issue, from the MATLAB installation that
includes Spreadsheet Link EX, run the command:

matlab /regserver

3-11

3 Error Messages and Troubleshooting

Startup Errors
If you have enabled MLAutoStart, double-clicking an xls file in the MATLAB
Current Folder browser and choosing Open Outside MATLAB causes a
Microsoft Excel error to appear. To open the file successfully, click End in
the error window.

To avoid this issue, disable MLAutoStart. Start MATLAB sessions from the
Excel interface by clicking the startmatlab button in the Excel menu bar.

3-12

Audible Error Signals

Audible Error Signals
You may hear audible errors while passing data to the MATLAB workspace
using MLPutMatrix or MLAppendMatrix. These errors usually indicate that
you have insufficient computer memory to carry out the operation. Close other
applications or clear unnecessary variables from the MATLAB workspace and
try again. If the error signal reoccurs, you probably have insufficient physical
memory in your computer for this operation.

3-13

3 Error Messages and Troubleshooting

3-14

4

Functions — Alphabetical
List

matlabfcn

Purpose Evaluate MATLAB command given Microsoft Excel data

Syntax matlabfcn(command,inputs)

Description matlabfcn(command,inputs) passes the command to the MATLAB
workspace for evaluation, given the function input data. The function
returns a single value or string depending upon the MATLAB output.
The result is returned to the calling worksheet cell. This function is
intended for use as an Excel worksheet function.

Tips • If matlabfcn fails, then by default you get a standard Spreadsheet
Link EX error, such as #COMMAND. To return MATLAB error strings,
use MLShowMatlabErrors.

Input
Arguments

command

MATLAB command to evaluate.

Embed the command in double quotes, for example, "command".

inputs

Variable length input argument list passed to a MATLAB command.

The argument list may contain a range of worksheet cells that contain
input data.

Examples Compute the Sum of Excel Data and Return the Result to
an Active Cell

Add the data in worksheet cells B1 through B10 returning the sum to
the active worksheet cell:

matlabfcn("sum", B1:B10)

Plot Excel Data Using the MATLAB Plotting Function

Plot the data in worksheet cells B1 through B10, using x as the marker
type:

4-2

matlabfcn

matlabfcn("plot", B1:B10, "x")

See Also matlabsub | MLShowMatlabErrors

4-3

matlabinit

Purpose Initialize Spreadsheet Link EX and start MATLAB

Syntax matlabinit

Description matlabinit Initializes the Spreadsheet Link EX software and
starts MATLAB process. If the Spreadsheet Link EX software has
been initialized and the MATLAB software is running, subsequent
invocations do nothing. Use matlabinit to start Spreadsheet Link EX
and MATLAB sessions manually when you have set MLAutoStart to no.
If you set MLAutoStart to yes, matlabinit executes automatically.

Tips • To run matlabinit from the Microsoft Excel toolbar, click
Tools > Macro. In the Macro Name/Reference box, enter
matlabinit and click Run. Alternatively, you could include this
function in a macro subroutine. You cannot run matlabinit as a
worksheet cell formula or in a macro function.

See Also MLAutoStart | MLOpen

4-4

matlabsub

Purpose Evaluate MATLAB command given Microsoft Excel data and designate
output location

Syntax matlabsub(command,edat,inputs)

Description matlabsub(command,edat,inputs) passes the specified command
to the MATLAB workspace for evaluation, given the function input
data. The function returns a single value or string depending upon
the MATLAB output. This function is intended for use as an Excel
worksheet function.

Tips • To return an array of data to the Microsoft Excel Visual Basic for
Applications (VBA) workspace, see MLEvalString and MLGetVar.

• edat must not include the cell that contains the matlabsub function.
In other words, be careful not to overwrite the function itself.

• Ensure that there is enough room in the worksheet to write the
matrix contents. If there is insufficient room, the function generates
a fatal error.

• If matlabsub fails, then by default you get a standard Spreadsheet
Link EX error, such as #COMMAND. To return MATLAB error strings,
use MLShowMatlabErrors.

Input
Arguments

command

MATLAB command to evaluate.

Enter the MATLAB command in double quotes, for example, "command".

edat

Worksheet location where the function writes the returned data.

edat in quotes directly specifies the location.edat without quotes
specifies a worksheet cell address (or range name) that contains a
reference to the location. In both cases, edat must be a cell address or
a range name.

4-5

matlabsub

Although you can specify a range of output cells, matlabsub does not
support multiple outputs. Instead of returning multiple outputs,
matlabsub returns the first output starting in the first cell from the
specified range, and discards all other outputs.

inputs

Variable length input argument list passed to MATLAB command.

This argument list can contain a range of worksheet cells that contain
input data.

Examples Compute the Sum of Data and Return Result to the Specified
Cell

Sum the data in worksheet cells B1 through B10 returning the output to
cell A1:

matlabsub("sum", "A1", B1:B10)

See Also matlabfcn | MLShowMatlabErrors

4-6

MLAppendMatrix

Purpose Create or append MATLAB matrix with data from Microsoft Excel
worksheet

Syntax MLAppendMatrix(var_name,mdat)
MLAppendMatrix var_name,mdat
out = MLAppendMatrix(var_name,mdat)

Description MLAppendMatrix(var_name,mdat) appends data in mdat to MATLAB
matrix var_name or creates var_name if it does not exist. Use this
syntax when working directly in a worksheet.

MLAppendMatrix var_name,mdat appends data in mdat to MATLAB
matrix var_name or creates var_name if it does not exist. Use this
syntax in a VBA macro.

out = MLAppendMatrix(var_name,mdat) lets you catch errors when
executing MLAppendMatrix in a VBA macro. If MLAppendMatrix fails,
then out is a string containing error code. Otherwise, out is 0.

Tips • MLAppendMatrix checks the dimensions of var_name and mdat to
determine how to append mdat to var_name. If the dimensions allow
appending mdat as either new rows or new columns, it appends
mdat to var_name as new rows. If the dimensions do not match, the
function returns an error.

• If mdat is not initially an Excel Range data type and you call the
function from a worksheet, MLAppendMatrix performs the necessary
type coercion.

• If mdat is not an Excel Range data type and you call the function
from within a Microsoft Visual Basic macro, the call fails. The error
message ByRef Argument Type Mismatch appears.

Input
Arguments

var_name

Name of MATLAB matrix to which to append data.

var_name in quotes directly specifies the matrix name. var_name
without quotes specifies a worksheet cell address (or range name) that

4-7

MLAppendMatrix

contains the matrix name. Do not use the MATLAB variable ans as
var_name.

mdat

Location of data to append to var_name.

mdat must be a worksheet cell address or range name. Do not enclose
it in quotes.

mdat must contain either numeric data or string data. Data types
cannot be combined within the range specified in mdat. Empty mdat
cells become MATLAB matrix elements containing zero if the data is
numeric, and empty strings if the data is a string.

Output
Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples Append Data from a Worksheet Cell Range to a MATLAB
Matrix

In this example, B is a 2-by-2 MATLAB matrix. Append the data in
worksheet cell range A1:A2 to B:

MLAppendMatrix("B", A1:A2)

A1

A2

B is now a 2-by-3 matrix with the data from A1:A2 in the third column.

4-8

MLAppendMatrix

Append Data from a Named Worksheet Cell Range to a
MATLAB Matrix

B is a 2-by-2 MATLAB matrix. Cell C1 contains the label (string) B,
and new_data is the name of the cell range A1:B2. Append the data in
cell range A1:B2 to B:

MLAppendMatrix(C1, new_data)

A1 B1

A2 B2

B is now a 4-by-2 matrix with the data from A1:B2 in the last two rows.

See Also MLPutMatrix

4-9

MLAutoStart

Purpose Automatically start MATLAB

Syntax MLAutoStart(flag)
MLAutoStart flag
out = MLAutoStart(flag)

Description MLAutoStart(flag) sets automatic startup of the Spreadsheet Link EX
and MATLAB software. A change of state takes effect the next time
an Excel session starts. Use this syntax when working directly in a
worksheet.

MLAutoStart flag sets automatic startup of the Spreadsheet Link EX
and MATLAB software. A change of state takes effect the next time an
Excel session starts. Use this syntax in a VBA macro.

out = MLAutoStart(flag) lets you catch errors when executing
MLAutoStart in a VBA macro. If MLAutoStart fails, then out is a string
containing error code. Otherwise, out is 0.

Tips • If Spreadsheet Link EX and MATLAB are running, then
MLAutoStart("no") does not stop them.

Input
Arguments

flag

Either "yes" or "no".

Specify "yes" to automatically start the Spreadsheet Link EX and
MATLAB software every time a Microsoft Excel session starts. Specify
"no" to cancel automatic startup of the Spreadsheet Link EX and
MATLAB software.

Default: "yes"

Output
Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

4-10

MLAutoStart

Examples Cancel Automatic Startup of Spreadsheet Link EX and
MATLAB

Enter this command in a worksheet:

MLAutoStart("no")

Spreadsheet Link EX and MATLAB do not start on subsequent Excel
session invocations.

See Also matlabinit | MLClose | MLOpen

Concepts • “Start Spreadsheet Link EX and MATLAB Automatically” on page
1-16

4-11

MLClose

Purpose Stop MATLAB

Syntax MLClose()
MLClose
out = MLClose()

Description MLClose() ends the MATLAB process, deletes all variables from the
MATLAB workspace, and tells the Microsoft Excel software that the
MATLAB software is no longer running. Use this syntax when working
directly in a worksheet.

MLClose ends the MATLAB process, deletes all variables from the
MATLAB workspace, and tells the Microsoft Excel software that the
MATLAB software is no longer running. Use this syntax in a VBA
macro.

out = MLClose() lets you catch errors when executing MLClose in a
VBA macro. If MLClose fails, then out is a string containing error code.
Otherwise, out is 0.

Tips • If you use MLClose when no MATLAB process is running, nothing
happens.

Output
Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples End the MATLAB Session

End the MATLAB session from a worksheet:

MLClose()

See Also MLAutoStart | MLOpen

Concepts • “Stop Spreadsheet Link EX and MATLAB” on page 1-18

4-12

MLDeleteMatrix

Purpose Delete MATLAB matrix

Syntax MLDeleteMatrix(var_name)
MLDeleteMatrix var_name
out = MLDeleteMatrix(var_name)

Description MLDeleteMatrix(var_name) deletes the named matrix from the
MATLAB workspace. Use this syntax when working directly in a
worksheet.

MLDeleteMatrix var_name deletes the named matrix from the
MATLAB workspace. Use this syntax in a VBA macro.

out = MLDeleteMatrix(var_name) lets you catch errors when
executing MLDeleteMatrix in a VBA macro. If MLDeleteMatrix fails,
then out is a string containing error code. Otherwise, out is 0.

Input
Arguments

var_name

Name of MATLAB matrix to delete.

var_name in quotes directly specifies the matrix name. var_name
without quotes specifies a worksheet cell address (or range name) that
contains the matrix name.

Output
Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples Delete a Matrix from the MATLAB Workspace

Delete matrix A from the MATLAB workspace:

MLDeleteMatrix("A")

See Also MLAppendMatrix | MLGetMatrix | MLPutMatrix

4-13

MLEvalString

Purpose Evaluate command in MATLAB

Syntax MLEvalString(command)
MLEvalString command
out = MLEvalString(command)

Description MLEvalString(command) passes a command string to the MATLAB
software for evaluation. Use this syntax when working directly in a
worksheet.

MLEvalString command passes a command string to the MATLAB
software for evaluation. Use this syntax in a VBA macro.

out = MLEvalString(command) lets you catch errors when executing
MLEvalString in a VBA macro. If MLEvalString fails, then out is a
string containing error code or error message. Otherwise, out is 0.

Tips • The specified action alters only the MATLAB workspace. It has no
effect on the Microsoft Excel workspace.

• If MLEvalString fails, then by default you get a standard Spreadsheet
Link EX error, such as #COMMAND. To return MATLAB error strings,
use MLShowMatlabErrors.

Input
Arguments

command

MATLAB command to evaluate.

command in quotes directly specifies the command. command without
quotes specifies a worksheet cell address (or range name) that contains
the command.

Output
Arguments

out

0 if the command succeeded. Otherwise, a string containing error code
or error message. To return MATLAB error messages instead of error
code, use MLShowMatlabErrors.

4-14

MLEvalString

Examples Evaluate a MATLAB Command from an Excel Worksheet

Divide the MATLAB variable b by 2, and then plot it:

MLEvalString("b = b/2;plot(b)")

This command only modifies the MATLAB variable b. To update data
in the Excel worksheet, use MLGetMatrix.

See Also MLGetMatrix | MLShowMatlabErrors

4-15

MLGetFigure

Purpose Import current MATLAB figure into Microsoft Excel spreadsheet

Syntax MLGetFigure(width,height)
MLGetFigure width, height
out = MLGetFigure(width,height)

Description MLGetFigure(width,height) import the current MATLAB figure into
an Excel worksheet, where the top-left corner of the figure is the current
spreadsheet cell. Use this syntax when working directly in a worksheet.

MLGetFigure width, height import the current MATLAB figure into
an Excel worksheet, where the top-left corner of the figure is the current
spreadsheet cell. Use this syntax in a VBA macro.

out = MLGetFigure(width,height) lets you catch errors when
executing MLGetFigure in a VBA macro. If MLGetFigure fails, then out
is a string containing error code. Otherwise, out is 0.

Tips • If you use Microsoft Excel 2007 or 2010, MLGetFigure scales the
imported figure by the product of width and height along both
dimensions.

• If worksheet calculation mode is automatic, MLGetFigure executes
when you enter the formula in a cell. If worksheet calculation mode
is manual, enter the MLGetFigure function in a cell, then press F9
to execute it. Remember that pressing F9 in this situation can also
execute other worksheet functions again and generate unpredictable
results.

• If you use MLGetFigure in a macro subroutine, enter MatlabRequest
on the line after the MLGetFigure. MatlabRequest initializes internal
Spreadsheet Link EX variables and enables MLGetFigure to function
in a subroutine. Do not include MatlabRequest in a macro function
unless the function is called from a subroutine.

Input
Arguments

width

Width (in normalized units) of the MATLAB figure when imported into
an Excel worksheet.

4-16

MLGetFigure

height

Height (in normalized units) of the MATLAB figure when imported
into an Excel worksheet.

Output
Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples Import a MATLAB Figure into an Excel Worksheet

Import the current MATLAB figure into an Excel worksheet. Specify the
width and the height of the figure to be half those of the original figure:

MLGetFigure(.5,.5)

Note that if you use Microsoft Excel 2007 or 2010, the width and the
height of the imported figure will be a quarter of those of the original
figure.

See Also MLGetMatrix | MLGetVar

4-17

MLGetMatrix

Purpose Write contents of MATLAB matrix to Microsoft Excel worksheet

Syntax MLGetMatrix(var_name,edat)
MLGetMatrix var_name, edat
out = MLGetMatrix(var_name,edat)

Description MLGetMatrix(var_name,edat) writes the contents of MATLAB matrix
var_name in the Excel worksheet, beginning in the upper-left cell
specified by edat. Use this syntax when working directly in a worksheet.

MLGetMatrix var_name, edat writes the contents of MATLAB matrix
var_name in the Excel worksheet, beginning in the upper-left cell
specified by edat. Use this syntax in a VBA macro.

out = MLGetMatrix(var_name,edat) lets you catch errors when
executing MLGetMatrix in a VBA macro. If MLGetMatrix fails, then out
is a string containing error code. Otherwise, out is 0.

Tips • If data exists in the specified worksheet cells, it is overwritten.

• If the dimensions of the MATLAB matrix are larger than that of the
specified cells, the data overflows into additional rows and columns.

• edat must not include the cell that contains the MLGetMatrix
function. In other words, be careful not to overwrite the function
itself. Also make sure there is enough room in the worksheet to
write the matrix contents. If there is insufficient room, the function
generates a fatal error.

• MLGetMatrix function does not automatically adjust cell addresses.
If edat is an explicit cell address, edit it to correct the address when
you do either of the following:

- Insert or delete rows or columns.

- Move or copy the function to another cell.

• If worksheet calculation mode is automatic, MLGetMatrix executes
when you enter the formula in a cell. If worksheet calculation mode is
manual, enter the MLGetMatrix function in a cell, and then press F9

4-18

MLGetMatrix

to execute it. However, pressing F9 in this situation may also execute
other worksheet functions again and generate unpredictable results.

• If you use MLGetMatrix in a macro subroutine, enter MatlabRequest
on the line after the MLGetMatrix. MatlabRequest initializes internal
Spreadsheet Link EX variables and enables MLGetMatrix to function
in a subroutine. Do not include MatlabRequest in a macro function
unless the function is called from a subroutine.

Input
Arguments

var_name

Name of MATLAB matrix to access.

var_name in quotes directly specifies the matrix name. var_name
without quotes specifies a worksheet cell address (or range name) that
contains the matrix name. Do not use the MATLAB variable ans as
var_name.

edat

Worksheet location where the function writes the contents of var_name.

edat in quotes directly specifies the location. edat without quotes
specifies a worksheet cell address (or range name) that contains a
reference to the location. In both cases, edat must be a cell address or
a range name.

Output
Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples Specify the Matrix Name and Location Directly

Write the contents of the MATLAB matrix bonds starting in cell C10 of
Sheet2. If bonds is a 4-by-3 matrix, fill cells C10..E13 with data:

MLGetMatrix("bonds", "Sheet2!C10")

4-19

MLGetMatrix

Specify the Matrix Name and Location Indirectly

Access the MATLAB matrix named by the string in worksheet cell
B12. Write the contents of the matrix to the worksheet starting at the
location named by the string in worksheet cell B13:

MLGetMatrix(B12, B13)

Use MLGetMatrix in a VBA Macro

Write the contents of MATLAB matrix A to the worksheet, starting at
the cell named by RangeA:

Sub Get_RangeA()
MLGetMatrix "A", "RangeA"
MatlabRequest
End Sub

Use the Address Property of the Range Object to Specify
Location

In a macro, use the Address property of the range object returned by
the VBA Cells function to specify where to write the data:

Sub Get_Variable()
MLGetMatrix "X", Cells(3, 2).Address
MatlabRequest
End Sub

Catch Errors in a VBA Macro

Use this function to get the variable A from MATLAB and to test if
the command succeeded:

Sub myfun()
Dim out As Variant

out = MLGetMatrix("A", "A1")

4-20

MLGetMatrix

If out <> 0 Then
MsgBox out

End If
MatlabRequest

End Sub

If MLGetMatrix fails, myfun displays a message box with the error code.

See Also MLAppendMatrix | MLPutMatrix | MLPutRanges

4-21

MLGetVar

Purpose Write contents of MATLAB matrix in Microsoft Excel VBA variable

Syntax MLGetVar ML_var_name, VBA_var_name
out = MLGetVar ML_var_name, VBA_var_name

Description MLGetVar ML_var_name, VBA_var_name writes the contents of
MATLAB matrix ML_var_name in the Excel Visual Basic for
Applications (VBA) variable VBA_var_name. Creates VBA_var_name if
it does not exist. Replaces existing data in VBA_var_name.

out = MLGetVar ML_var_name, VBA_var_name lets you catch errors
when executing MLGetVar. If MLGetVar fails, then out is a string
containing error code. Otherwise, out is 0.

Input
Arguments

ML_var_name

Name of MATLAB matrix to access.

ML_var_name in quotes directly specifies the matrix name. ML_var_name
without quotes specifies a VBA variable that contains the matrix name
as a string. Do not use the MATLAB variable ans as ML_var_name. If
defined, ML_var_name must be of type VARIANT. Any other type will give
a "TYPE MISMATCH" error.

VBA_var_name

Name of VBA variable where the function writes the contents of
ML_var_name.

Use VBA_var_name without quotes.

Output
Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples Write the Contents of a MATLAB Matrix into a VBA Variable

Write the contents of the MATLAB matrix J into the VBA variable
DataJ:

4-22

MLGetVar

Sub Fetch()
MLGetVar "J", DataJ
End Sub

See Also MLPutVar

4-23

MLMissingDataAsNaN

Purpose Set empty cells to NaN or 0

Syntax MLMissingDataAsNaN(flag)
MLMissingDataAsNaN flag
out = MLMissingDataAsNaN(flag)

Description MLMissingDataAsNaN(flag) sets empty cells to NaN or 0. When the
Spreadsheet Link EX software is installed, the default is "no", so empty
cells are handled as 0s. If you change the value of MLUseCellArray to
"yes", the change remains in effect the next time a Microsoft Excel
session starts. Use this syntax when working directly in a worksheet.

MLMissingDataAsNaN flag sets empty cells to NaN or 0. Use this syntax
in a VBA macro.

out = MLMissingDataAsNaN(flag) lets you catch errors
when executing MLMissingDataAsNaN in a VBA macro. If
MLMissingDataAsNaN fails, then out is a string containing error code.
Otherwise, out is 0.

Tips • A string in an Excel range always forces cell array output and empty
cells as NaNs.

Input
Arguments

flag

Either "yes" or "no".

Specify "yes" to set empty cells to use NaNs. Specify "no" to set empty
cells to use 0s.

Default: "no"

Output
Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples Set Empty Cells to Use 0s

Cancel the use of the value NaN for empty cells:

4-24

MLMissingDataAsNaN

MLMissingDataAsNaN("no")

See Also MLPutMatrix

4-25

MLOpen

Purpose Start MATLAB

Syntax MLOpen()
MLOpen
out = MLOpen()

Description MLOpen() starts MATLAB process. Use MLOpen to restart the MATLAB
session after you have stopped it with MLClose in a given Microsoft
Excel session. Use this syntax when working directly in a worksheet.

MLOpen starts MATLAB process. Use MLOpen to restart the MATLAB
session after you have stopped it with MLClose in a given Microsoft
Excel session. Use this syntax in a VBA macro.

out = MLOpen() lets you catch errors when executing MLOpen in a
VBA macro. If MLOpen fails, then out is a string containing error code.
Otherwise, out is 0.

Tips • If a MATLAB process has already started, subsequent calls to MLOpen
do nothing.

• To start a MATLAB session and initialize the Spreadsheet Link EX
software, use matlabinit rather than MLOpen.

Output
Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples Start a MATLAB Session

Start a MATLAB session from a worksheet:

MLOpen()

See Also matlabinit | MLClose

4-26

MLPutMatrix

Purpose Create or overwrite MATLAB matrix with data from Microsoft Excel
worksheet

Syntax MLPutMatrix(var_name, mdat)
MLPutMatrix var_name, mdat
out = MLPutMatrix(var_name,mdat)

Description MLPutMatrix(var_name, mdat) creates or overwrites matrix var_name
in MATLAB workspace with specified data in mdat. Creates var_name
if it does not exist. Use this syntax when working directly in a worksheet.

MLPutMatrix var_name, mdat creates or overwrites matrix var_name
in MATLAB workspace with specified data in mdat. Use this syntax
in a VBA macro.

out = MLPutMatrix(var_name,mdat) lets you catch errors when
executing MLPutMatrix in a VBA macro. If MLPutMatrix fails, then out
is a string containing error code. Otherwise, out is 0.

Tips • If var_name exists, this function replaces the contents with mdat.

• Empty numeric data cells within the range of mdat become numeric
zeros within the MATLAB matrix identified by var_name.

• If any element of mdat contains string data, mdat is exported as
a MATLAB cell array. Empty string elements within the range of
mdatmdat become NaNs within the MATLAB cell array.

• When using MLPutMatrix in a subroutine, indicate the source of the
worksheet data using the Microsoft Excel macro Range. For example:

Sub test()
MLPutMatrix "a", Range("A1:A3")

End Sub

If you have a named range in your worksheet, you can specify the
name instead of the range; for example:

Sub test()

4-27

MLPutMatrix

MLPutMatrix "a", Range("temp")
End Sub

where temp is a named range in your worksheet.

Input
Arguments

var_name

Name of MATLAB matrix to create or overwrite.

var_name in quotes directly specifies the matrix name. var_name
without quotes specifies a worksheet cell address (or range name) that
contains the matrix name.

mdat

Location of data to copy into var_name.

mdat must be a worksheet cell address or range name. Do not enclose
it in quotes.

Output
Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples Create or Overwrite a Matrix in the MATLAB Workspace

Create or overwrite matrix A in the MATLAB workspace with the data
in the worksheet range A1:C3:

MLPutMatrix "A", Range("A1:C3")

Import Data from a Microsoft Excel Worksheet to the
MATLAB Workspace Using the putmatrix Toolbar Button

1 In the Excel worksheet, select the columns and/or rows you want to
export to the MATLAB workspace.

4-28

MLPutMatrix

2 Click the putmatrix button on the Spreadsheet Link EX toolbar.
A window appears that prompts you to specify the name of the
MATLAB variable in which you want to store your data.

3 Enter newmatrix for the MATLAB variable name.

4 Click OK.

Now you can manipulate newmatrix in the MATLAB Command
Window.

newmatrix
newmatrix =

4-29

MLPutMatrix

1 2 3
4 5 6

See Also MLAppendMatrix | MLGetMatrix | MLPutRanges

4-30

MLPutRanges

Purpose Send data in Microsoft Excel named ranges to MATLAB

Syntax = MLPutRanges()

MLPutRanges
out = MLPutRanges()

Description = MLPutRanges() writes the named cell ranges in a Microsoft Excel
spreadsheet into MATLAB variables. The variables are named with the
same name specified by the cell range name in Microsoft Excel. To
use this syntax, right-click in any Microsoft Excel cell and enter this
syntax and press Enter.

MLPutRanges writes the named cell ranges in a Microsoft Excel
spreadsheet into MATLAB variables. The variables are named with the
same name specified by the cell range name in Microsoft Excel. Use this
syntax when working directly in a Microsoft Visual Basic macro.

out = MLPutRanges() returns the named cell ranges in a Microsoft
Excel spreadsheet into MATLAB variables. The variables are named
with the same name specified by the cell range name in Microsoft Excel.
In this case, out specifies whether the MLPutRanges function executed
successfully. Use this syntax when working directly in a Microsoft
Visual Basic macro.

Output
Arguments

out - Status
0 | string

Status for execution of MLPutRanges, returned as 0 if the function
succeeded, or a string containing an error code.

4-31

MLPutRanges

Examples Send Microsoft Excel Named Ranges to MATLAB in a
Microsoft Excel Cell

Define a name for a range of cells. For instructions about defining
names, see Excel Help and enter the search term: define and use
names in formulas.

The name of the range of cells appears in the Name Box. In this
example, the range selected from cell A1 to cell E1 is named testData.

Call the function inside a worksheet cell to send data in the named
ranges in the current worksheet to MATLAB.

= MLPutRanges()

4-32

MLPutRanges

After pressing Enter, the range named testData is sent from Microsoft
Excel to a variable named testData in MATLAB.

Send Microsoft Excel Named Ranges to MATLAB in Microsoft
Visual Basic Macro Without Output

Call the function to send data in the named ranges in the current
worksheet to MATLAB.

MLPutRanges

4-33

MLPutRanges

Send Microsoft Excel Named Ranges to MATLAB in Microsoft
Visual Basic Macro with Output

Call the function to send data in the named ranges in the current
worksheet to MATLAB.

out = MLPutRanges()

out returns 0 if the function succeeded or a string with the
corresponding error code if the function failed.

See Also MLPutMatrix | MLGetMatrix

4-34

MLPutVar

Purpose Create or overwrite MATLAB matrix with data from Microsoft Excel
VBA variable

Syntax MLPutVar ML_var_name, VBA_var_name
out = MLPutVar ML_var_name, VBA_var_name

Description MLPutVar ML_var_name, VBA_var_name creates or overwrites matrix
ML_var_name in MATLAB workspace with data in VBA_var_name.
Creates ML_var_name if it does not exist. If ML_var_name exists, this
function replaces the contents with data from VBA_var_name.

out = MLPutVar ML_var_name, VBA_var_name lets you catch errors
when executing MLPutVar. If MLPutVar fails, then out is a string
containing error code. Otherwise, out is 0.

Tips • Use MLPutVar only in a macro subroutine, not in a macro function or
in a subroutine called by a function.

• Empty numeric data cells within VBA_var_name become numeric
zeros within the MATLAB matrix identified by ML_var_name.

• If any element of VBA_var_name contains string data,
VBA_var_name is exported as a MATLAB cell array. Empty string
elements within VBA_var_name become NaNs within the MATLAB
cell array.

Input
Arguments

ML_var_name

Name of MATLAB matrix to create or overwrite.

ML_var_name in quotes directly specifies the matrix name. ML_var_name
without quotes specifies a VBA variable that contains the matrix name
as a string.

VBA_var_name

Name of VBA variable whose contents are written to ML_var_name.

Use VBA_var_name without quotes.

4-35

MLPutVar

Output
Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples Create a MATLAB Matrix Using Data Stored in a VBA Variable

Create (or overwrite) the MATLAB matrix K with the data in the VBA
variable DataK:

Sub Put()
MLPutVar "K", DataK
End Sub

See Also MLGetVar

4-36

MLShowMatlabErrors

Purpose Return standard Spreadsheet Link EX errors or full MATLAB errors
using MLEvalString

Syntax MLShowMatlabErrors(flag)
MLShowMatlabErrors flag
out = MLShowMatlabErrors(flag)

Description MLShowMatlabErrors(flag) sets the Spreadsheet Link EX error
display mode when executing MATLAB commands using MLEvalString.
Use this syntax when working directly in a worksheet.

MLShowMatlabErrors flag sets the Spreadsheet Link EX error display
mode when executing MATLAB commands using MLEvalString. Use
this syntax in a VBA macro.

out = MLShowMatlabErrors(flag) lets you catch errors
when executing MLShowMatlabErrors in a VBA macro. If
MLShowMatlabErrors fails, then out is a string containing error code.
Otherwise, out is 0.

Input
Arguments

flag

Either "yes" or "no".

Specify "yes" to display the full MATLAB error string upon
MLEvalString failure. Specify "no" to display the standard Spreadsheet
Link EX errors upon MLEvalString failure.

Default: "no"

Output
Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples Switch to Displaying Spreadsheet Link EX Errors

Switch to displaying standard Spreadsheet Link EX errors, such as
#COMMAND, on MLEvalString failures:

4-37

MLShowMatlabErrors

MLShowMatlabErrors("no")

Switch to Displaying MATLAB Errors

Switch to displaying MATLAB error strings, such as ??? Undefined
function or variable 'foo', on MLEvalString failures:

MLShowMatlabErrors("yes")

See Also MLEvalString

4-38

MLStartDir

Purpose Specify MATLAB current working folder after startup

Syntax MLStartDir(path)
MLStartDir path
out = MLStartDir(path)

Description MLStartDir(path) sets the MATLAB working folder after startup. Use
this syntax when working directly in a worksheet.

MLStartDir path sets the MATLAB working folder after startup. Use
this syntax in a VBA macro.

out = MLStartDir(path) lets you catch errors when executing
MLStartDir in a VBA macro. If MLStartDir fails, then out is a string
containing error code. Otherwise, out is 0.

Tips • This function does not work like the standard Microsoft Windows
Start In setting, because it does not automatically run startup.m or
matlabrc.m in the specified folder.

• The working folder changes only if you run MATLAB after you run
this function. Running this function while MATLAB is running
does not change the working folder for the current session. In this
case, MATLAB uses the specified folder as the working folder when
it is restarted.

Input
Arguments

path

Path to the new MATLAB working folder after startup.

Output
Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples Specify MATLAB Working Folder

Set the MATLAB working folder to d:\work after startup:

MLStartDir (d:\work)

4-39

MLStartDir

Specify MATLAB Working Folder That Includes Spaces

If your folder path includes a space, embed the path in single quotation
marks within double quotation marks.

Set the MATLAB working folder to d:\my work:

MLStartDir ('d:\my work')

See Also MLAutoStart

4-40

MLUseCellArray

Purpose Toggle MLPutMatrix to use MATLAB cell arrays

Syntax MLUseCellArray(flag)
MLUseCellArray flag
out = MLUseCellArray(flag)

Description MLUseCellArray(flag) specifies whether MLPutMatrix must use cell
arrays for transfer of data (for example, dates). When the Spreadsheet
Link EX software is installed, the default is "no". If you change the
value of MLUseCellArray to "yes", the change remains in effect the
next time a Microsoft Excel session starts. Use this syntax when
working directly in a worksheet.

MLUseCellArray flag specifies whether MLPutMatrix must use cell
arrays for transfer of data. Use this syntax in a VBA macro.

out = MLUseCellArray(flag) lets you catch errors when executing
MLUseCellArray in a VBA macro. If MLUseCellArray fails, then out is
a string containing error code. Otherwise, out is 0.

Input
Arguments

flag

Either "yes" or "no".

Specify "yes" to automatically uses cell arrays for transfer of data
structures. Specify "no" to stop using cell arrays for transfer of data
structures.

Default: "no"

Output
Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples Stop Using Cell Arrays When Transferring Data Structures

Cancel automatic use of cell arrays for easy transfer of data:

MLUseCellArray("no")

4-41

MLUseCellArray

See Also MLPutMatrix

4-42

MLUseFullDesktop

Purpose Specify whether to use full MATLAB desktop or MATLAB Command
Window

Syntax MLUseFullDesktop(flag)
MLUseFullDesktop flag
out = MLUseFullDesktop(flag)

Description MLUseFullDesktop(flag) sets the MATLAB session to start with the
full desktop or Command Window only. Use this syntax when working
directly in a worksheet.

MLUseFullDesktop flag sets the MATLAB session to start with the
full desktop or Command Window only. Use this syntax in a VBA macro.

out = MLUseFullDesktop(flag) lets you catch errors when executing
MLUseFullDesktop in a VBA macro. If MLUseFullDesktop fails, then
out is a string containing error code. Otherwise, out is 0.

Input
Arguments

flag

Either "yes" or "no".

Specify "yes" to start full MATLAB desktop. Specify "no" to start the
MATLAB Command Window only.

Default: "yes"

Output
Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples Start Only the MATLAB Command Window

Set the MATLAB session to start with the command window only:

MLUseFullDesktop("no")

See Also matlabinit | MLClose | MLOpen

4-43

	toc
	Getting Started
	Spreadsheet Link EX Product Description
	Key Features

	Microsoft Excel and MATLAB Interaction
	Installation
	Product Installation
	Files and Folders Created by the Installation
	After You Upgrade the Spreadsheet Link EX Software

	Add-In Setup
	Configure Microsoft Excel 2003 and Earlier
	Configure Microsoft Excel 2007 and Later
	Work with the Microsoft Visual Basic Editor

	Customization
	Set Spreadsheet Link EX Preferences
	Use Particular Versions of MATLAB

	Startup and Shutdown
	Start Spreadsheet Link EX and MATLAB Automatically
	Start Spreadsheet Link EX and MATLAB Manually
	Connect to an Already Running MATLAB Session
	Specify the MATLAB Startup Folder
	Stop Spreadsheet Link EX and MATLAB

	MATLAB Functions in Microsoft Excel
	Spreadsheet Link EX and Microsoft Excel Functions
	Types of Spreadsheet Link EX Functions
	Use Spreadsheet Link EX Functions with Microsoft Excel 2007 and
	Execute a Function from the Microsoft Excel Ribbon
	Execute a Function from a Microsoft Excel Cell

	Use Worksheets
	Enter Functions into Worksheet Cells
	Automatic Calculation Mode vs. Manual Calculation Mode

	Work with Arguments
	Variable-Name Arguments
	Data-Location Arguments

	Use the MATLAB Function Wizard
	Use the Function Wizard to Access Custom MATLAB Functions

	Use Spreadsheet Link EX Functions in Macros
	About the Examples
	Send MATLAB Data to an Excel Worksheet and Displaying the Result
	Import and Export Data Between the Microsoft Excel Interface and

	Work with Dates
	Localization Information

	Solving Problems with the Spreadsheet Link EX Software
	Model Data Using Regression and Curve Fitting
	Using Worksheets
	Using Macros

	Interpolate Data
	Price Stock Options Using the Binomial Model
	Compute Efficient Frontier of Financial Portfolios
	Map Time and Bond Cash Flows

	Error Messages and Troubleshooting
	Worksheet Cell Errors
	Microsoft Excel Errors
	Data Errors
	Matrix Data Errors
	Errors When Opening Saved Worksheets

	License Errors
	Startup Errors
	Audible Error Signals

	Functions — Alphabetical List

	tables
	Worksheet Cell Error Messages
	Excel Error Messages
	Excel Error Message Boxes
	Data Errors

